Vista normal Vista MARC Vista ISBD

Deep learning

por Goodfellow, Ian
Autores adicionales: Bengio, Yoshua | Courville, Aaron
Series: Adaptive computation and machine learning Publicado por : The MIT Press (Cambridge) Detalles físicos: xxii, 775 páginas : ilustraciones ISBN:0262035618; 9780262035613. Año : 2016
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Copia número Estado Fecha de vencimiento
<br> Libro
Libro
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 

Sábados 8:00 am. - 3:00 pm.

2do piso
Libro 001.535 G651d (Navegar estantería) Ej.1 Disponible
<br> Libro
Libro
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 

Sábados 8:00 am. - 3:00 pm.

2do piso
Libro 001.535 G651d (Navegar estantería) Ej.2 Disponible
<br> Libro
Libro
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 

Sábados 8:00 am. - 3:00 pm.

2do piso
Libro 001.535 G651d (Navegar estantería) Ej.3 Disponible

Applied Math and Machine Learning Basics. Linear algebra. -- Probability and information theory. -- Numerical computation. -- Machine learning basics. -- Deep Networks : Modern Practices. Deep feedforward networks. -- Regularization for deep learning. -- Optimization for training deep models. -- Convolutional networks. -- Sequence modeling : recurrent and recursive nets. -- Practical methodology. -- Applications. -- Deep Learning Research. Linear factor models. -- Autoencoders. -- Representation learning. -- Structured probabilistic models for deep learning. -- Monte Carlo methods. -- Confronting the partition function. -- Approximate inference. -- Deep generative models.

"Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and video games. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors".

Texto en inglés