Vista normal Vista MARC Vista ISBD

Introduction to real analysis

por Bartle, Robert Gardner
Autores adicionales: Sherbert, Donald R. -- 1935-
Declaración de edición:Cuarta edición Publicado por : Wiley (Hoboken) Detalles físicos: xiii, 402 páginas ISBN:9780471433316 (4a.Ed.); 0471433314. Año : 2011 Lista(s) en las que aparece este ítem: Ciencias Naturales y Matemáticas
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Vol info Copia número Estado Fecha de vencimiento
<br> Libro
Libro
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 
Sábados 8:00 am. - 3:00 pm.
2do piso
Libro 515 B289i (Navegar estantería) 4a.Ed. Ej.1 Prestado 18/10/2019
<br> Libro
Libro
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 
Sábados 8:00 am. - 3:00 pm.
2do piso
Libro 515 B289i (Navegar estantería) 4a.Ed. Ej.2 Prestado 24/09/2019
<br> Libro de reserva
Libro de reserva
Claustro
Lunes a Viernes 6:00 am - 9:00 pm 
Sábados 8:00 am. - 3:00 pm.
2do piso
Libro de reserva 515 B289i (Navegar estantería) 4a.Ed. Ej.3 Disponible

Ch. 1.Preliminaries: 1.1. Sets and functions; 1.2. Mathematical induction; 1.3. Finite and infinite sets -- Ch. 2. The Real Numbers: 2.1. The algebraic and order properties of R; 2.2. Absolute value and real line; 2.3. The completeness property of R; 2.4. Applications of the supremum property; 2.5. Intervals -- Ch. 3. Sequences and series: 3.1. Sequences and their limits; 3.2. Limit theorems; 3.3. Monotone sequences; 3.4. Subsequences and the Bolzano-Weierstrass theorem; 3.5. The Cauchy criterion; 3.6. Properly divergent sequences; 3.7. Introduction to infinite series -- Ch. 4. Limits: 4.1. Limits of functions; 4.2. Limit theorems; 4.3. Some extensions of the limit concept -- Ch. 5. Continuous functions: 5.1. Continuous runctions; 5.2 . Combinations of continuous runctions; 5.3. Continuous functions on intervals; 5.4. Uniform continuity; 5.5. Continuity and gauges; 5.6. Monotone and inverse functions -- Ch. 6. Differentiation: 6.1. The derivative; 6.2. The mean value theorem; 6.3. L'Hospital's rules; 6.4. Taylor's Theorem -- Ch. 7. The Riemann integral: 7.1. Riemann integral; 7.2. Riemann integrable functions; 7.3. The fundamental theorem; 7.4. The Darboux integral; 7.5. Approximate integration -- Ch. 8. Sequences of functions: 8.1. Pointwise and uniform convergence; 8.2. Interchange of limits; 8.3. The exponential and logarithmic functions; 8.4. The trigonometric functions -- Ch. 9. Infinite series: 9.1. Absolute convergence; 9.2. Tests for absolute convergence; 9.3. Tests for nonabsolute convergence; 9.4. Series of functions -- Ch. 10. The generalized Riemann integral: 10.1. Definition and main poperties; 10.2. Improper and Lebesgue integrals; 10.3. Infinite intervals; 10.4. Convergence theorems -- Ch. 11. A glimpse into topology: 11.1. Open and closed sets in R; 11.2 Compact sets; 11.3. Continuous functions; 11.4. Metrtic Spaces -- Appendix A. Logic and proofs -- Appendix B. Finite and countable sets -- Appendix C. The Riemann and Lebesgue criteria -- Appendix D. Approximate integration -- Appendix E. Two examples.

"This text provides the fundamental concepts and techniques of real analysis for students in all of these areas. It helps one develop the ability to think deductively, analyse mathematical situations and extend ideas to a new context. Like the first three editions, this edition maintains the same spirit and user-friendly approach with addition examples and expansion on Logical Operations and Set Theory. There is also content revision in the following areas: introducing point-set topology before discussing continuity, including a more thorough discussion of limsup and limimf, covering series directly following sequences, adding coverage of Lebesgue Integral and the construction of the reals, and drawing student attention to possible applications wherever possible"--