TY - GEN AU - Scott,David AU - Sia,Elaine A. AU - Brockett,Mirjana AU - Fixsen,William D AU - Lavitt,Diane K TI - Solutions manual for Introduction to genetic analysis SN - 9781429232555 (10a.Ed) PY - 2011/// CY - New York (Estados Unidos) PB - W. H. Freeman and Company KW - Genética KW - Problemas y ejercicios KW - Genética molecular KW - Manuales de laboratorio KW - Genética vegetal N1 - aCh. 1 The Genetics Revolution in the Life Sciences -- 1.1. The Nature of Biological Information -- The molecular structure of DNA -- DNA is organized into genes and chromosomes -- 1.2. How Information Becomes Biological Form -- Transcription -- Translation -- How does life replicate itself? -- Change at the DNA level -- 1.3. Genetics and Evolution -- Natural selection -- Constructing evolutionary lineages -- 1.4. Genetics Has Provided a Powerful New Approach to Biological Research -- Forward genetics -- Reverse genetics -- Manipulating DNA -- Detecting specific sequences of DNA, RNA, and protein -- 1.5. Model Organisms Have Been Crucial in the Genetics Revolution -- 1.6. Genetics Changes Society -- 1.7. Genetics and the Future -- pt. I Transmission Genetics -- ch. 2 Single-Gene Inheritance -- 2.1. Single-Gene Inheritance Patterns -- Mendel's pioneering experiments -- Mendel's law of equal segregation -- 2.2. The Chromosomal Basis of Single-Gene Inheritance Patterns -- Single-gene inheritance in diploids -- Single-gene inheritance in haploids -- 2.3. The Molecular Basis of Mendelian Inheritance Patterns -- Structural differences between alleles at the molecular level -- Molecular aspects of gene transmission -- Alleles at the molecular level -- 2.4. Some Genes Discovered by Observing Segregation Ratios -- A gene active in the development of flower color -- A gene for wing development -- A gene for hyphal branching -- Forward genetics -- Predicting progeny proportions or parental genotypes by applying the principles of single-gene inheritance -- 2.5. Sex-Linked Single-Gene Inheritance Patterns -- Sex chromosomes -- Sex-linked patterns of inheritance -- X-linked inheritance -- 2.6. Human Pedigree Analysis -- Autosomal recessive disorders -- Autosomal dominant disorders -- Autosomal polymorphisms -- X-linked recessive disorders -- X-linked dominant disorders -- Y-linked inheritance -- Calculating risks in pedigree analysis -- ch. 3 Independent Assortment of Genes -- 3.1. Mendel's Law of Independent Assortment -- 3.2. Working with Independent Assortment -- Predicting progeny ratios -- Using the chi-square test on monohybrid and dihybrid ratios -- Synthesizing pure lines -- Hybrid vigor -- 3.3. The Chromosomal Basis of Independent Assortment -- Independent assortment in diploid organisms -- Independent assortment in haploid organisms -- Independent assortment of combinations of autosomal and X-linked genes -- Recombination -- 3.4. Polygenic Inheritance -- 3.5.Organelle Genes: Inheritance Independent of the Nucleus -- Patterns of inheritance in organelles -- Cytoplasmic segregation -- Cytoplasmic mutations in humans -- MtDNA in evolutionary studies -- ch. 4 Mapping Eukaryote Chromosomes by Recombination -- 4.1. Diagnostics of Linkage -- Using recombinant frequency to estimate linkage -- How crossovers produce recombinants for linked genes -- Linkage symbolism and terminology -- Evidence that crossing over is a breakage-and-rejoining process -- Evidence that crossing over takes place at the four-chromatid stage -- Multiple crossovers can include more than two chromatids -- 4.2. Mapping by Recombinant Frequency -- Map units -- Three-point testcross -- Deducing gene order by inspection -- Interference -- Using ratios as diagnostics -- 4.3. Mapping with Molecular Markers -- Single nucleotide polymorphisms -- Simple sequence length polymorphisms -- Detecting simple sequence length polymorphism -- Recombination analysis using molecular markers -- 4.4. Centromere Mapping with Linear Tetrads -- 4.5. Using the Chi-Square Test for Testing Linkage Analysis -- 4.6. Accounting for Unseen Multiple Crossovers -- A mapping function -- The Perkins formula -- 4.7. Using Recombination-Based Maps in Conjunction with Physical Maps -- 4.8. The Molecular Mechanism of Crossing Over -- ch. 5 The Genetics of Bacteria and Their Viruses -- 5.1. Working with Microorganisms -- 5.2. Bacterial Conjugation -- Discovery of conjugation -- Discovery of the fertility factor (F) -- Hfr strains -- Mapping of bacterial chromosomes -- F plasmids that carry genomic fragments -- R plasmids -- 5.3. Bacterial Transformation -- The nature of transformation -- Chromosome mapping using transformation -- 5.4. Bacteriophage Genetics -- Infection of bacteria by phages -- Mapping phage chromosomes by using phage crosses -- 5.5. Transduction -- Discovery of transduction -- Generalized transduction -- Specialized transduction -- Mechanism of specialized transduction -- 5.6. Physical Maps and Linkage Maps Compared -- ch. 6 Gene Interaction -- 6.1. Interactions Between the Alleles of a Single Gene: Variations on Dominance -- Complete dominance and recessiveness -- Incomplete dominance -- Codominance -- Recessive lethal alleles -- 6.2. Interaction of Genes in Pathways -- Biosynthetic pathways in Neurospora -- Gene interaction in other types of pathways -- 6.3. Inferring Gene Interactions -- Sorting mutants using the complementation test -- Analyzing double mutants of random mutations -- 6.4. Penetrance and Expressivity -- pt. II From DNA to Phenotype -- ch. 7 DNA: Structure and Replication -- 7.1. DNA: The Genetic Material -- Discovery of transformation -- Hershey -- Chase experiment -- 7.2. The DNA Structure -- DNA structure before Watson and Crick -- The double helix -- 7.3. Semiconservative Replication -- Meselson-Stahl experiment -- The replication fork -- DNA polymerases -- 7.4. Overview of DNA Replication -- 7.5. The Replisome: A Remarkable Replication Machine -- Unwinding the double helix -- Assembling the replisome: replication initiation -- 7.6. Replication in Eukaryotic Organisms -- The eukaryotic replisome -- Eukaryotic origins of replication -- DNA replication and the yeast cell cycle -- Replication origins in higher eukaryotes -- 7.7. Telomeres and Telomerase: Replication Termination -- ch. 8 RNA: Transcription and Processing -- 8.1. RNA -- Early experiments suggest an RNA intermediate -- Properties of RNA -- Classes of RNA -- 8.2. Transcription -- Overview: DNA as transcription template -- Stages of transcription -- 8.3. Transcription in Eukaryotes -- Transcription initiation in eukaryotes -- Elongation, termination, and pre-mRNA processing in eukaryotes -- 8.4. Intron Removal and Exon Splicing -- Small nuclear RNAs (snRNAs): The mechanism of exon splicing -- Self-splicing introns and the RNA world -- 8.5. Small Functional RNAs that Regulate and Protect the Eukaryotic Genome -- miRNAs are important regulators of gene expression -- siRNAs ensure genome stability -- Similar mechanisms generate siRNA and miRNA -- ch. 9 Proteins and Their Synthesis -- 9.1. Protein Structure -- 9.2. The Genetic Code -- Overlapping versus nonoverlapping codes -- Number of letters in the codon -- Use of suppressors to demonstrate a triplet code -- Degeneracy of the genetic code -- Cracking the code -- Stop codons -- 9.3.tRNA: The Adapter -- Codon translation by tRNA -- Degeneracy revisited -- 9.4. Ribosomes -- Ribosome features -- Translation initiation, elongation, and termination -- Nonsense suppressor mutations -- 9.5. The Proteome -- Alternative splicing generates protein isoforms -- Posttranslational events -- ch. 10 Gene Isolation and Manipulation -- 10.1. Overview: Isolating and Amplifying Specific DNA Fragments -- 10.2. Generating Recombinant DNA Molecules -- Genomic DNA can be cut up before cloning -- The polymerase chain reaction amplifies selected regions of DNA in vitro -- DNA copies of mRNA can be synthesized -- Attaching donor and vector DNA -- Amplification of donor DNA inside a bacterial cell -- Making genomic and cDNA libraries -- 10.3. Finding a Specific Clone of Interest -- Finding specific clones by using probes -- Finding specific clones by functional complementation -- Southern- and Northern-blot analysis of DNA -- 10.4. Determining the Base Sequence of a DNA Segment -- 10.5. Aligning Genetic and Physical Maps to Isolate Specific Genes -- Using positional cloning to identify a human-disease gene -- Using fine-mapping to identify genes -- 10.6. Genetic Engineering -- Genetic engineering in Saccharomyces cerevisiae -- Genetic engineering in plants -- Genetic engineering in animals -- ch. 11 Regulation of Gene Expression in Bacteria and Their Viruses -- 11.1. Gene Regulation -- The basics of prokaryotic transcriptional regulation: genetic switches -- A first look at the lac regulatory circuit -- 11.2. Discovery of the lac System: Negative Control -- Genes controlled together -- Genetic evidence for the operator and repressor -- Genetic evidence for allostery -- Genetic analysis of the lac promoter -- Molecular characterization of the Lac repressor and the lac operator -- Polar mutations -- 11.3. Catabolite Repression of the lac Operon: Positive Control -- The basics of lac catabolite repression: choosing the best sugar to metabolize -- The structure of DNA target sites -- A summary of the lac operon -- 11.4. Dual Positive and Negative Control: The Arabinose Operon -- 11.5. Metabolic Pathways and Additional Levels of Regulation: Attenuation -- 11.6. Bacteriophage Life Cycles: More Regulators, Complex Operons -- Molecular anatomy of the genetic switch -- Sequence-specific binding of regulatory proteins to DNA -- 11.7. Alternative Sigma Factors Regulate Large Sets of Genes -- ch. 12 Regulation of Gene Expression in Eukaryotes -- 12.1. Transcriptional Regulation in Eukaryotes: An Overview -- 12.2. Lessons from Yeast: The GAL System -- Gal4 regulates multiple genes through upstream activation sequences -- The Gal4 protein has separable DNA-binding and activation domains -- Gal4 activity is physiologically regulated -- Gal4 functions in most eukaryotes -- Activators recruit the transcriptional machinery -- The control of yeast mating type: combinatorial interactions -- 12.3. Dynamic Chromatin -- Chromatin-remodeling proteins and gene activation -- Histones and chromatin remodeling -- The inheritance of histone modifications and chromatin structure ER -